Journal Paper (11)

A knotted metamolecule with axisymmetric strong optical activity

Optical activity is the ability of chiral materials to rotate linearly polarized electromagnetic waves. A knotted chiral metamolecule is introduced here that exhibits strong optical activity corresponding to a 90° polarization rotation of the incident waves. More importantly, the torus knot structure is intrinsically chiral and multifold axisymmetric. Consequently, the observed polarization rotation behavior is found to be independent of how the incident wave is polarized. The metamolecule is fabricated through selective laser melting and experimentally validated in the microwave spectrum. This work represents the first ever metamolecule to be reported that is intrinsically axisymmetric and capable of simultaneously exhibiting…

By Dr. Wending Mai

Conductive mixed-order generalized dispersion model for noble metals in the optical regime

Various dispersion models can be expressed as special cases of the Generalized Dispersion Model (GDM), which is composed of a series of Pade polynomials. While important for its broad applicability, we found that some materials with Drude dispersive terms can be accurately modeled by mixing a 1st order Pade polynomial with an extra conductivity term. This conductivity term can be separated from the auxiliary differential equation (ADE). Therefore, the proposed mixed-order model can achieve the same accuracy with fewer unknowns, thus realizing higher computational efficiency and lower memory consumption. For examples, we derive the model parameters and corresponding numerical errors…

By Dr. Wending Mai

Antireflection temporal coatings: comment

The quarter-wavelength matching technique is widely used because it minimizes the reflection while it maximizes the transmission. The recently introduced antireflection temporal coatings (ATCs) [Optica7, 323 (2020)10.1364/OPTICA.381175] have been considered as its temporal analog. However, our study shows that by introducing an ATC, not only will the reflection be reduced but also the transmission. This phenomenon is opposite its spatial counterpart, which indicates that ATCs are more than simply a temporal dual of quarter-wavelength matching. This is a direct consequence of the different physical phenomena that are manifested in the temporal and spatial domains. Read more Wending Mai,* Jingwei Xu,…

By Dr. Wending Mai

Complete polarization conversion using anisotropic temporal slabs

It is well known that control over the polarization of electromagnetic waves can be achieved by utilizing artificial anisotropic media such as metamaterials. However, most of the related research has been focused on time-invariant systems. Inspired by the concept of temporal boundaries, we propose a method to realize polarization conversion in real time by employing time-variant materials, whose permittivity or permeability switches between isotropic and anisotropic values. The criteria for complete polarization conversion are studied for several polarization angles, both analytically and numerically. Read more Jingwei Xu,* Wending Mai, AND Douglas H. Werner

By Dr. Wending Mai

Discontinuous Galerkin time domain method with dispersive modified Debye model and its application to the analysis of optical frequency selective surfaces

We develop a discontinuous Galerkin time domain (DGTD) algorithm with an experimentally validated modified Debye model (MDM) to take metal dispersion into consideration. The MDM equation is coupled with Maxwell’s equations and solved together through the auxiliary differential equation (ADE) method. A Runge-Kutta time-stepping scheme is proposed to update the semi-discrete transformed Maxwell’s equations and ADEs with high order accuracy. Then we employ the proposed algorithm to analyze an infinite doubly periodic frequency selective surface (FSS) operating in the optical regime that exhibits transmission enhancement due to the surface plasmatic effect. The accuracy and the efficiency enhancements are validated through…

By Dr. Wending Mai

Prismatic discontinuous Galerkin time domain method with an integrated generalized dispersion model for efficient optical metasurface analysis

Planar photonics technology is expected to facilitate new physics and enhanced functionality for a new generation of disruptive optical devices. To analyze such planar optical metasurfaces efficiently, we propose a prismatic discontinuous Galerkin time domain (DGTD) method with a generalized dispersive material (GDM) model to conduct the full-wave electromagnetic simulation of planar photonic nanostructures. Prism-based DGTD allows for triangular prismatic space discretization, which is optimal for planar geometries. In order to achieve an accurate universal model for arbitrary dispersive materials, the GDM model is integrated within the prism-based DGTD. As an advantage of prismatic spatial discretization, the prism-based DGTD with…

By Dr. Wending Mai

An improved 2D/3D hybrid discontinuous Galerkin time domain method

Power integrity (PI) problem is essential when analyzing high speed signal passing through power ground. The fundamental mode in power ground is the zero-order parallel plate mode, which is capable for 2D simplification. However, in areas around anti-pads and other z-axis discontinuities, 3D algorithm has to be adopted to improve the accuracy. A hybrid 2D/3D discontinuous Galerkin time domain (DGTD) method has advantage on both accuracy and efficiency, thus is effective to cope with such full wave simulations. The 2D and 3D domains share the same triangular prism mesh. With appropriated basis functions, different domains can couple with each other…

By Dr. Wending Mai

Broadband transparent chiral mirrors: Design methodology and bandwidth analysis

Chiral mirrors are a class of metamaterials that reflect circularly polarized light of a certain helicity in a handedness-preserving manner, while absorbing circular polarization of the opposite handedness. However, most absorbing chiral mirrors operate only in a narrow frequency band, as limited by the causality principle. Instead of absorbing the undesired waveform, here we propose a transparent chiral mirror that allows undesired waves to pass through. In particular, the handedness-preserving band of the transparent chiral mirror is free of the causality limit, thus enabling broadband functionality. Furthermore, since electromagnetic waves outside the handedness-preserving band may transmit through the proposed chiral…

By Dr. Wending Mai

Prism-based DGTD with a simplified periodic boundary condition to analyze FSS with D2n symmetry in a rectangular array under normal incidence

In this letter, we develop a prism-based discontinuous Galerkin time-domain (DGTD) algorithm with simplified periodic boundary conditions (PBCs) to analyze infinite doubly periodic frequency selective surfaces (FSS). Most FSS structures contain patterned planar conductive layers and supporting dielectric layers. These layers are very thin compared to the wavelength. Therefore, general tetrahedral discretization of space will unnecessarily increase the number of mesh elements, as well as the number of unknowns. Instead, we propose using prismatic elements, which are more optimal for planar structures, resulting in less unknowns, less memory usage, and higher efficiency. The accuracy of the proposed prism-based DGTD method…

By Dr. Wending Mai

A straightforward updating criterion for 2-D/3-D hybrid discontinuous Galerkin time-domain method controlling comparative error

The 2-D/3-D hybrid discontinuous Galerkin time-domain (DGTD) method is efficient to deal with structures that contain elements capable of 2-D simplification. To separate 2-D elements from 3-D ones, a criterion for approximation error manipulation is required. However, in the latest reported technique, this kind of criterion is derived from the causality principle and the Courant–Freidrichs–Lewy constraint, and thus is indirect and inessential to 2-D simplification. As a result, some elements capable of 2-D simplification are unnecessarily flagged as 3-D ones, deteriorating efficiency dramatically. Moreover, controlling absolute error, the traditional criterion is not flexible for structures with complex mode distribution. In…

By Dr. Wending Mai

An efficient and stable 2-D/3-D hybrid discontinuous Galerkin time-domain analysis with adaptive criterion for arbitrarily shaped antipads in dispersive parallel-plate pair

A hybrid 2-D and 3-D discontinuous Garlerkin time-domain (DGTD) method is proposed for transient analysis of multiple arbitrarily shaped antipads in a dispersive parallel-plate pair. In the proposed hybrid method, the domains where only the zeroth-order parallel-plate mode exists are modeled by the 2-D DGTD, and the remaining domains are modeled by the 3-D DGTD. Each element is independent with others, thus easily parallelizable. Because higher order modes will propagate in the parallel-plate pair, the spatial domain decomposition should be time-dependent. For domain decomposition criterion at time step $\text t_\text n$ , the electromagnetic field distribution at the previous time…

By Dr. Wending Mai